Skip to content

API Reference

Complete API documentation for the Poindexter library.

Core Functions

Version

func Version() string

Returns the current version of the library.

Returns: - string: The version string (e.g., "0.3.0")

Example:

version := poindexter.Version()
fmt.Println(version) // Output: 0.3.0

Hello

func Hello(name string) string

Returns a greeting message.

Parameters: - name (string): The name to greet. If empty, defaults to "World"

Returns: - string: A greeting message

Examples:

// Greet the world
message := poindexter.Hello("")
fmt.Println(message) // Output: Hello, World!

// Greet a specific person
message = poindexter.Hello("Alice")
fmt.Println(message) // Output: Hello, Alice!

Sorting Functions

Basic Sorting

SortInts

func SortInts(data []int)

Sorts a slice of integers in ascending order in place.

Example:

numbers := []int{3, 1, 4, 1, 5, 9}
poindexter.SortInts(numbers)
fmt.Println(numbers) // Output: [1 1 3 4 5 9]

SortIntsDescending

func SortIntsDescending(data []int)

Sorts a slice of integers in descending order in place.

Example:

numbers := []int{3, 1, 4, 1, 5, 9}
poindexter.SortIntsDescending(numbers)
fmt.Println(numbers) // Output: [9 5 4 3 1 1]

SortStrings

func SortStrings(data []string)

Sorts a slice of strings in ascending order in place.

Example:

words := []string{"banana", "apple", "cherry"}
poindexter.SortStrings(words)
fmt.Println(words) // Output: [apple banana cherry]

SortStringsDescending

func SortStringsDescending(data []string)

Sorts a slice of strings in descending order in place.


SortFloat64s

func SortFloat64s(data []float64)

Sorts a slice of float64 values in ascending order in place.


SortFloat64sDescending

func SortFloat64sDescending(data []float64)

Sorts a slice of float64 values in descending order in place.


Advanced Sorting

SortBy

func SortBy[T any](data []T, less func(i, j int) bool)

Sorts a slice using a custom comparison function.

Parameters: - data: The slice to sort - less: A function that returns true if data[i] should come before data[j]

Example:

type Person struct {
    Name string
    Age  int
}

people := []Person{
    {"Alice", 30},
    {"Bob", 25},
    {"Charlie", 35},
}

// Sort by age
poindexter.SortBy(people, func(i, j int) bool {
    return people[i].Age < people[j].Age
})
// Result: [Bob(25) Alice(30) Charlie(35)]

SortByKey

func SortByKey[T any, K int | float64 | string](data []T, key func(T) K)

Sorts a slice by extracting a comparable key from each element in ascending order.

Parameters: - data: The slice to sort - key: A function that extracts a sortable key from each element

Example:

type Product struct {
    Name  string
    Price float64
}

products := []Product{
    {"Apple", 1.50},
    {"Banana", 0.75},
    {"Cherry", 3.00},
}

// Sort by price
poindexter.SortByKey(products, func(p Product) float64 {
    return p.Price
})
// Result: [Banana(0.75) Apple(1.50) Cherry(3.00)]

SortByKeyDescending

func SortByKeyDescending[T any, K int | float64 | string](data []T, key func(T) K)

Sorts a slice by extracting a comparable key from each element in descending order.

Example:

type Student struct {
    Name  string
    Score int
}

students := []Student{
    {"Alice", 85},
    {"Bob", 92},
    {"Charlie", 78},
}

// Sort by score descending
poindexter.SortByKeyDescending(students, func(s Student) int {
    return s.Score
})
// Result: [Bob(92) Alice(85) Charlie(78)]

Checking if Sorted

IsSorted

func IsSorted(data []int) bool

Checks if a slice of integers is sorted in ascending order.


IsSortedStrings

func IsSortedStrings(data []string) bool

Checks if a slice of strings is sorted in ascending order.


IsSortedFloat64s

func IsSortedFloat64s(data []float64) bool

Checks if a slice of float64 values is sorted in ascending order.


BinarySearch

func BinarySearch(data []int, target int) int

Performs a binary search on a sorted slice of integers.

Parameters: - data: A sorted slice of integers - target: The value to search for

Returns: - int: The index where target is found, or -1 if not found

Example:

numbers := []int{1, 3, 5, 7, 9, 11}
index := poindexter.BinarySearch(numbers, 7)
fmt.Println(index) // Output: 3

BinarySearchStrings

func BinarySearchStrings(data []string, target string) int

Performs a binary search on a sorted slice of strings.

Parameters: - data: A sorted slice of strings - target: The value to search for

Returns: - int: The index where target is found, or -1 if not found

KDTree Helpers

Poindexter provides helpers to build normalized, weighted KD points from your own records. These functions min–max normalize each axis over your dataset, optionally invert axes where higher is better (to turn them into “lower cost”), and apply per‑axis weights.

func Build2D[T any](
    items []T,
    id func(T) string,
    f1, f2 func(T) float64,
    weights [2]float64,
    invert [2]bool,
) ([]KDPoint[T], error)

func Build3D[T any](
    items []T,
    id func(T) string,
    f1, f2, f3 func(T) float64,
    weights [3]float64,
    invert [3]bool,
) ([]KDPoint[T], error)

func Build4D[T any](
    items []T,
    id func(T) string,
    f1, f2, f3, f4 func(T) float64,
    weights [4]float64,
    invert [4]bool,
) ([]KDPoint[T], error)

Example (4D over ping, hops, geo, score):

// weights and inversion: flip score so higher is better → lower cost
weights := [4]float64{1.0, 0.7, 0.2, 1.2}
invert  := [4]bool{false, false, false, true}

pts, err := poindexter.Build4D(
    peers,
    func(p Peer) string { return p.ID },
    func(p Peer) float64 { return p.PingMS },
    func(p Peer) float64 { return p.Hops },
    func(p Peer) float64 { return p.GeoKM },
    func(p Peer) float64 { return p.Score },
    weights, invert,
)
if err != nil { panic(err) }

kdt, _ := poindexter.NewKDTree(pts, poindexter.WithMetric(poindexter.EuclideanDistance{}))
best, dist, _ := kdt.Nearest([]float64{0, 0, 0, 0})

Notes: - Keep and reuse your normalization parameters (min/max) if you need consistency across updates; otherwise rebuild points when the candidate set changes. - Use invert to turn “higher is better” features (like scores) into lower costs for distance calculations.


KDTree Constructors and Errors

NewKDTree

func NewKDTree[T any](pts []KDPoint[T], opts ...KDOption) (*KDTree[T], error)

Build a KDTree from the provided points. All points must have the same dimensionality (> 0) and IDs (if provided) must be unique.

Possible errors: - ErrEmptyPoints: no points provided - ErrZeroDim: dimension must be at least 1 - ErrDimMismatch: inconsistent dimensionality among points - ErrDuplicateID: duplicate point ID encountered

NewKDTreeFromDim

func NewKDTreeFromDim[T any](dim int, opts ...KDOption) (*KDTree[T], error)

Construct an empty KDTree with the given dimension, then populate later via Insert.


KDTree Notes: Complexity, Ties, Concurrency

  • Complexity: current implementation uses O(n) linear scans for queries (Nearest, KNearest, Radius). Inserts are O(1) amortized. Deletes by ID are O(1) using swap-delete (order not preserved).
  • Tie ordering: when multiple neighbors have the same distance, ordering of ties is arbitrary and not stable between calls.
  • Concurrency: KDTree is not safe for concurrent mutation. Wrap with a mutex or share immutable snapshots for read-mostly workloads.

See runnable examples in the repository examples/ and the docs pages for 1D DHT and multi-dimensional KDTree usage.

KDTree Normalization Stats (reuse across updates)

To keep normalization consistent across dynamic updates, compute per‑axis min/max once and reuse it to build points later. This avoids drift when the candidate set changes.

Types

// AxisStats holds the min/max observed for a single axis.
type AxisStats struct {
    Min float64
    Max float64
}

// NormStats holds per‑axis normalisation stats; for D dims, Stats has length D.
type NormStats struct {
    Stats []AxisStats
}

Compute normalization stats

func ComputeNormStats2D[T any](items []T, f1, f2 func(T) float64) NormStats
func ComputeNormStats3D[T any](items []T, f1, f2, f3 func(T) float64) NormStats
func ComputeNormStats4D[T any](items []T, f1, f2, f3, f4 func(T) float64) NormStats

Build with precomputed stats

func Build2DWithStats[T any](
    items []T,
    id func(T) string,
    f1, f2 func(T) float64,
    weights [2]float64,
    invert [2]bool,
    stats NormStats,
) ([]KDPoint[T], error)

func Build3DWithStats[T any](
    items []T,
    id func(T) string,
    f1, f2, f3 func(T) float64,
    weights [3]float64,
    invert [3]bool,
    stats NormStats,
) ([]KDPoint[T], error)

func Build4DWithStats[T any](
    items []T,
    id func(T) string,
    f1, f2, f3, f4 func(T) float64,
    weights [4]float64,
    invert [4]bool,
    stats NormStats,
) ([]KDPoint[T], error)

Example (2D)

// Compute stats once over your baseline set
stats := poindexter.ComputeNormStats2D(peers,
    func(p Peer) float64 { return p.PingMS },
    func(p Peer) float64 { return p.Hops },
)

// Build points using those stats (now or later)
pts, _ := poindexter.Build2DWithStats(
    peers,
    func(p Peer) string { return p.ID },
    func(p Peer) float64 { return p.PingMS },
    func(p Peer) float64 { return p.Hops },
    [2]float64{1,1}, [2]bool{false,false}, stats,
)

Notes: - If min==max for an axis, normalized value is 0 for that axis. - invert[i] flips the normalized axis as 1 - n before applying weights[i]. - These helpers mirror Build2D/3D/4D, but use your provided NormStats instead of recomputing from the items slice.


KDTree Normalization Helpers (N‑D)

Poindexter includes helpers to build KD points from arbitrary dimensions.

func BuildND[T any](
    items []T,
    id func(T) string,
    features []func(T) float64,
    weights []float64,
    invert []bool,
) ([]KDPoint[T], error)

// Like BuildND but never returns an error. It performs no validation beyond
// basic length checks and propagates NaN/Inf values from feature extractors.
func BuildNDNoErr[T any](
    items []T,
    id func(T) string,
    features []func(T) float64,
    weights []float64,
    invert []bool,
) []KDPoint[T]
  • features: extract raw values per axis.
  • weights: per-axis weights, same length as features.
  • invert: if true for an axis, uses 1 - normalized before weighting (turns “higher is better” into lower cost).
  • Use ComputeNormStatsND + BuildNDWithStats to reuse normalization between updates.

Example:

pts := poindexter.BuildNDNoErr(records,
    func(r Rec) string { return r.ID },
    []func(Rec) float64{
        func(r Rec) float64 { return r.PingMS },
        func(r Rec) float64 { return r.Hops },
        func(r Rec) float64 { return r.GeoKM },
        func(r Rec) float64 { return r.Score },
    },
    []float64{1.0, 0.7, 0.2, 1.2},
    []bool{false, false, false, true},
)

KDTree Backend selection

Poindexter provides two internal backends for KDTree queries:

  • linear: always available; performs O(n) scans for Nearest, KNearest, and Radius.
  • gonum: optimized KD backend compiled when you build with the gonum build tag; typically sub-linear on prunable datasets and modest dimensions.

Types and options

// KDBackend selects the internal engine used by KDTree.
type KDBackend string

const (
    BackendLinear KDBackend = "linear"
    BackendGonum  KDBackend = "gonum"
)

// WithBackend selects the internal KDTree backend ("linear" or "gonum").
// If the requested backend is unavailable (e.g., missing build tag), the constructor
// falls back to the linear backend.
func WithBackend(b KDBackend) KDOption

Default selection

  • Default is linear.
  • If you build your project with -tags=gonum, the default becomes gonum.

Usage examples

// Default metric is Euclidean; you can override with WithMetric.
pts := []poindexter.KDPoint[string]{
    {ID: "A", Coords: []float64{0, 0}},
    {ID: "B", Coords: []float64{1, 0}},
}

// Force Linear (always available)
lin, _ := poindexter.NewKDTree(pts, poindexter.WithBackend(poindexter.BackendLinear))
_, _, _ = lin.Nearest([]float64{0.9, 0.1})

// Force Gonum (requires building with: go build -tags=gonum)
gon, _ := poindexter.NewKDTree(pts, poindexter.WithBackend(poindexter.BackendGonum))
_, _, _ = gon.Nearest([]float64{0.9, 0.1})

Supported metrics in the optimized backend

  • Euclidean (L2), Manhattan (L1), Chebyshev (L∞).
  • Cosine and Weighted-Cosine currently use the Linear backend.

See also the Performance guide for measured comparisons and guidance: docs/perf.md.