API Reference
Complete API documentation for the Poindexter library.
Core Functions
Version
Returns the current version of the library.
Returns:
- string: The version string (e.g., "0.3.0")
Example:
Hello
Returns a greeting message.
Parameters:
- name (string): The name to greet. If empty, defaults to "World"
Returns:
- string: A greeting message
Examples:
// Greet the world
message := poindexter.Hello("")
fmt.Println(message) // Output: Hello, World!
// Greet a specific person
message = poindexter.Hello("Alice")
fmt.Println(message) // Output: Hello, Alice!
Sorting Functions
Basic Sorting
SortInts
Sorts a slice of integers in ascending order in place.
Example:
numbers := []int{3, 1, 4, 1, 5, 9}
poindexter.SortInts(numbers)
fmt.Println(numbers) // Output: [1 1 3 4 5 9]
SortIntsDescending
Sorts a slice of integers in descending order in place.
Example:
numbers := []int{3, 1, 4, 1, 5, 9}
poindexter.SortIntsDescending(numbers)
fmt.Println(numbers) // Output: [9 5 4 3 1 1]
SortStrings
Sorts a slice of strings in ascending order in place.
Example:
words := []string{"banana", "apple", "cherry"}
poindexter.SortStrings(words)
fmt.Println(words) // Output: [apple banana cherry]
SortStringsDescending
Sorts a slice of strings in descending order in place.
SortFloat64s
Sorts a slice of float64 values in ascending order in place.
SortFloat64sDescending
Sorts a slice of float64 values in descending order in place.
Advanced Sorting
SortBy
Sorts a slice using a custom comparison function.
Parameters:
- data: The slice to sort
- less: A function that returns true if data[i] should come before data[j]
Example:
type Person struct {
Name string
Age int
}
people := []Person{
{"Alice", 30},
{"Bob", 25},
{"Charlie", 35},
}
// Sort by age
poindexter.SortBy(people, func(i, j int) bool {
return people[i].Age < people[j].Age
})
// Result: [Bob(25) Alice(30) Charlie(35)]
SortByKey
Sorts a slice by extracting a comparable key from each element in ascending order.
Parameters:
- data: The slice to sort
- key: A function that extracts a sortable key from each element
Example:
type Product struct {
Name string
Price float64
}
products := []Product{
{"Apple", 1.50},
{"Banana", 0.75},
{"Cherry", 3.00},
}
// Sort by price
poindexter.SortByKey(products, func(p Product) float64 {
return p.Price
})
// Result: [Banana(0.75) Apple(1.50) Cherry(3.00)]
SortByKeyDescending
Sorts a slice by extracting a comparable key from each element in descending order.
Example:
type Student struct {
Name string
Score int
}
students := []Student{
{"Alice", 85},
{"Bob", 92},
{"Charlie", 78},
}
// Sort by score descending
poindexter.SortByKeyDescending(students, func(s Student) int {
return s.Score
})
// Result: [Bob(92) Alice(85) Charlie(78)]
Checking if Sorted
IsSorted
Checks if a slice of integers is sorted in ascending order.
IsSortedStrings
Checks if a slice of strings is sorted in ascending order.
IsSortedFloat64s
Checks if a slice of float64 values is sorted in ascending order.
Binary Search
BinarySearch
Performs a binary search on a sorted slice of integers.
Parameters:
- data: A sorted slice of integers
- target: The value to search for
Returns:
- int: The index where target is found, or -1 if not found
Example:
numbers := []int{1, 3, 5, 7, 9, 11}
index := poindexter.BinarySearch(numbers, 7)
fmt.Println(index) // Output: 3
BinarySearchStrings
Performs a binary search on a sorted slice of strings.
Parameters:
- data: A sorted slice of strings
- target: The value to search for
Returns:
- int: The index where target is found, or -1 if not found
KDTree Helpers
Poindexter provides helpers to build normalized, weighted KD points from your own records. These functions min–max normalize each axis over your dataset, optionally invert axes where higher is better (to turn them into “lower cost”), and apply per‑axis weights.
func Build2D[T any](
items []T,
id func(T) string,
f1, f2 func(T) float64,
weights [2]float64,
invert [2]bool,
) ([]KDPoint[T], error)
func Build3D[T any](
items []T,
id func(T) string,
f1, f2, f3 func(T) float64,
weights [3]float64,
invert [3]bool,
) ([]KDPoint[T], error)
func Build4D[T any](
items []T,
id func(T) string,
f1, f2, f3, f4 func(T) float64,
weights [4]float64,
invert [4]bool,
) ([]KDPoint[T], error)
Example (4D over ping, hops, geo, score):
// weights and inversion: flip score so higher is better → lower cost
weights := [4]float64{1.0, 0.7, 0.2, 1.2}
invert := [4]bool{false, false, false, true}
pts, err := poindexter.Build4D(
peers,
func(p Peer) string { return p.ID },
func(p Peer) float64 { return p.PingMS },
func(p Peer) float64 { return p.Hops },
func(p Peer) float64 { return p.GeoKM },
func(p Peer) float64 { return p.Score },
weights, invert,
)
if err != nil { panic(err) }
kdt, _ := poindexter.NewKDTree(pts, poindexter.WithMetric(poindexter.EuclideanDistance{}))
best, dist, _ := kdt.Nearest([]float64{0, 0, 0, 0})
Notes:
- Keep and reuse your normalization parameters (min/max) if you need consistency across updates; otherwise rebuild points when the candidate set changes.
- Use invert to turn “higher is better” features (like scores) into lower costs for distance calculations.
KDTree Constructors and Errors
NewKDTree
Build a KDTree from the provided points. All points must have the same dimensionality (> 0) and IDs (if provided) must be unique.
Possible errors:
- ErrEmptyPoints: no points provided
- ErrZeroDim: dimension must be at least 1
- ErrDimMismatch: inconsistent dimensionality among points
- ErrDuplicateID: duplicate point ID encountered
NewKDTreeFromDim
Construct an empty KDTree with the given dimension, then populate later via Insert.
KDTree Notes: Complexity, Ties, Concurrency
- Complexity: current implementation uses O(n) linear scans for queries (
Nearest,KNearest,Radius). Inserts are O(1) amortized. Deletes by ID are O(1) using swap-delete (order not preserved). - Tie ordering: when multiple neighbors have the same distance, ordering of ties is arbitrary and not stable between calls.
- Concurrency: KDTree is not safe for concurrent mutation. Wrap with a mutex or share immutable snapshots for read-mostly workloads.
See runnable examples in the repository examples/ and the docs pages for 1D DHT and multi-dimensional KDTree usage.
KDTree Normalization Stats (reuse across updates)
To keep normalization consistent across dynamic updates, compute per‑axis min/max once and reuse it to build points later. This avoids drift when the candidate set changes.
Types
// AxisStats holds the min/max observed for a single axis.
type AxisStats struct {
Min float64
Max float64
}
// NormStats holds per‑axis normalisation stats; for D dims, Stats has length D.
type NormStats struct {
Stats []AxisStats
}
Compute normalization stats
func ComputeNormStats2D[T any](items []T, f1, f2 func(T) float64) NormStats
func ComputeNormStats3D[T any](items []T, f1, f2, f3 func(T) float64) NormStats
func ComputeNormStats4D[T any](items []T, f1, f2, f3, f4 func(T) float64) NormStats
Build with precomputed stats
func Build2DWithStats[T any](
items []T,
id func(T) string,
f1, f2 func(T) float64,
weights [2]float64,
invert [2]bool,
stats NormStats,
) ([]KDPoint[T], error)
func Build3DWithStats[T any](
items []T,
id func(T) string,
f1, f2, f3 func(T) float64,
weights [3]float64,
invert [3]bool,
stats NormStats,
) ([]KDPoint[T], error)
func Build4DWithStats[T any](
items []T,
id func(T) string,
f1, f2, f3, f4 func(T) float64,
weights [4]float64,
invert [4]bool,
stats NormStats,
) ([]KDPoint[T], error)
Example (2D)
// Compute stats once over your baseline set
stats := poindexter.ComputeNormStats2D(peers,
func(p Peer) float64 { return p.PingMS },
func(p Peer) float64 { return p.Hops },
)
// Build points using those stats (now or later)
pts, _ := poindexter.Build2DWithStats(
peers,
func(p Peer) string { return p.ID },
func(p Peer) float64 { return p.PingMS },
func(p Peer) float64 { return p.Hops },
[2]float64{1,1}, [2]bool{false,false}, stats,
)
Notes:
- If min==max for an axis, normalized value is 0 for that axis.
- invert[i] flips the normalized axis as 1 - n before applying weights[i].
- These helpers mirror Build2D/3D/4D, but use your provided NormStats instead of recomputing from the items slice.
KDTree Normalization Helpers (N‑D)
Poindexter includes helpers to build KD points from arbitrary dimensions.
func BuildND[T any](
items []T,
id func(T) string,
features []func(T) float64,
weights []float64,
invert []bool,
) ([]KDPoint[T], error)
// Like BuildND but never returns an error. It performs no validation beyond
// basic length checks and propagates NaN/Inf values from feature extractors.
func BuildNDNoErr[T any](
items []T,
id func(T) string,
features []func(T) float64,
weights []float64,
invert []bool,
) []KDPoint[T]
features: extract raw values per axis.weights: per-axis weights, same length asfeatures.invert: if true for an axis, uses1 - normalizedbefore weighting (turns “higher is better” into lower cost).- Use
ComputeNormStatsND+BuildNDWithStatsto reuse normalization between updates.
Example:
pts := poindexter.BuildNDNoErr(records,
func(r Rec) string { return r.ID },
[]func(Rec) float64{
func(r Rec) float64 { return r.PingMS },
func(r Rec) float64 { return r.Hops },
func(r Rec) float64 { return r.GeoKM },
func(r Rec) float64 { return r.Score },
},
[]float64{1.0, 0.7, 0.2, 1.2},
[]bool{false, false, false, true},
)
KDTree Backend selection
Poindexter provides two internal backends for KDTree queries:
linear: always available; performs O(n) scans forNearest,KNearest, andRadius.gonum: optimized KD backend compiled when you build with thegonumbuild tag; typically sub-linear on prunable datasets and modest dimensions.
Types and options
// KDBackend selects the internal engine used by KDTree.
type KDBackend string
const (
BackendLinear KDBackend = "linear"
BackendGonum KDBackend = "gonum"
)
// WithBackend selects the internal KDTree backend ("linear" or "gonum").
// If the requested backend is unavailable (e.g., missing build tag), the constructor
// falls back to the linear backend.
func WithBackend(b KDBackend) KDOption
Default selection
- Default is
linear. - If you build your project with
-tags=gonum, the default becomesgonum.
Usage examples
// Default metric is Euclidean; you can override with WithMetric.
pts := []poindexter.KDPoint[string]{
{ID: "A", Coords: []float64{0, 0}},
{ID: "B", Coords: []float64{1, 0}},
}
// Force Linear (always available)
lin, _ := poindexter.NewKDTree(pts, poindexter.WithBackend(poindexter.BackendLinear))
_, _, _ = lin.Nearest([]float64{0.9, 0.1})
// Force Gonum (requires building with: go build -tags=gonum)
gon, _ := poindexter.NewKDTree(pts, poindexter.WithBackend(poindexter.BackendGonum))
_, _, _ = gon.Nearest([]float64{0.9, 0.1})
Supported metrics in the optimized backend
- Euclidean (L2), Manhattan (L1), Chebyshev (L∞).
- Cosine and Weighted-Cosine currently use the Linear backend.
See also the Performance guide for measured comparisons and guidance: docs/perf.md.